skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 14, 2026
  2. We address the problem of active logistic regression in the realizable setting. It is well known that active learning can require exponentially fewer label queries compared to passive learning, in some cases using $$\log \frac{1}{\eps}$$ rather than $$\poly(1/\eps)$$ labels to get error $$\eps$$ larger than the optimum. We present the first algorithm that is polynomially competitive with the optimal algorithm on every input instance, up to factors polylogarithmic in the error and domain size. In particular, if any algorithm achieves label complexity polylogarithmic in $$\eps$$, so does ours. Our algorithm is based on efficient sampling and can be extended to learn more general class of functions. We further support our theoretical results with experiments demonstrating performance gains for logistic regression compared to existing active learning algorithms. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  3. Free, publicly-accessible full text available April 1, 2026
  4. Researchers across various fields seek to understand causal relationships but often find controlled experiments impractical. To address this, statistical tools for causal discovery from naturally observed data have become crucial. Non-linear regression models, such as Gaussian process regression, are commonly used in causal inference but have limitations due to high costs when adapted for secure computation. Support vector regression (SVR) offers an alternative but remains costly in an Multi-party computation context due to conditional branches and support vector updates. In this paper, we propose Aitia, the first two-party secure computation protocol for bivariate causal discovery. The protocol is based on optimized multi-party computation design choices and is secure in the semi-honest setting. At the core of our approach is BSGD-SVR, a new non-linear regression algorithm designed for MPC applications, achieving both high accuracy and low computation and communication costs. Specifically, we reduce the training complexity of the non-linear regression model from approximately from O (𝑁^3) to O (𝑁^2) where 𝑁 is the number of training samples. We implement Aitia using CrypTen and assess its performance across various datasets. Empirical evaluations show a significant speedup of 3.6× to 340× compared to the baseline approach. 
    more » « less
  5. This paper addresses novel applications to practical modelling of the newly developed theory of necessary optimality conditions in controlled sweeping/Moreau processes with free time and pointwise control and state constraints. Problems of this type appear, in particular, in dynamical models dealing with unmanned surface vehicles (USVs) and nanoparticles. We formulate optimal control problems for a general class of such dynamical systems and show that the developed necessary optimality conditions for constrained free-time controlled sweeping processes lead us to designing efficient procedures to solve practical models of this class. Moreover, the paper contains numerical calculations of optimal solutions to marine USVs and nanoparticle models in specific situations. Overall, this study contributes to the advancement of optimal control theory for constrained sweeping processes and its practical applications in the fields of marine USVs and nanoparticle modelling. 
    more » « less
  6. In recent years, there has been a growing interest in and focus on the automatic detection of deceptive behavior. This attention is justified by the wide range of applications that deception detection can have, especially in fields such as criminology. This study specifically aims to contribute to the field of deception detection by capturing transcribed data, analyzing textual data using Natural Language Processing (NLP) techniques, and comparing the performance of conventional models using linguistic features with the performance of Large Language Models (LLMs). In addition, the significance of applied linguistic features has been examined using different feature selection techniques. Through extensive experiments, we evaluated the effectiveness of both conventional and deep NLP models in detecting deception from speech. Applying different models to the Real-Life Trial dataset, a single layer of Bidirectional Long Short-Term Memory (BiLSTM) tuned by early stopping outperformed the other models. This model achieved an accuracy of 93.57% and an F1 score of 94.48%. 
    more » « less
  7. Schmorrow, D; Fidopiastis, C (Ed.)